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Abstract—Cloud computing has had a profound impact on IT
professionals and businesses, offloading the overhead of configu-
ration and management of resources to the cloud provider. While
a lot of research has been conducted to optimize and propose
(new) in-cloud service delivery models, yet, service outages are the
norm rather than an exception. In this context, the multi-cloud
integration and deployment pattern is an appealing preposition,
especially for applications that must meet high availability
requirements. A distributed cloud deployment model coupled
with a monitoring solution spanning multiple domains could
help in a timely identification and isolation of faulty components,
alleviating service discontinuity problems. Pursuing this goal, we
propose an extension to NoMISHAP, a Platform as a Service
(PaaS) multi-cloud middleware, introducing a component-based
monitoring solution for use in distributed cloud infrastructures.
Collected results show the effectiveness of our proposal and its
ease of adoption for IT management tasks.

Index Terms—PaaS, middleware, Multi-cloud, Monitoring.

I. INTRODUCTION

Nowadays, the efficient deployment, and maintenance of
business services has gained a strategic importance for both
IT professionals and businesses. In this context, the Platform
as a Service (PaaS) paradigm and the emerging technological
ecosystem promises to reduce and to facilitate the evolution of
business services. This cloud computing model provides the
user with a development framework, while at the same tine
alleviates the burden of dealing with management and control
of the underlying infrastructure [1].

Over the years cloud providers have developed advanced
and heterogeneous PaaS services, allowing a differentiation
between the different vendors, potentially causing a lock-in
effect for the customer. At the same time, the availability of
the workloads hosted on cloud platforms is becoming more
and more relevant for many businesses, and any shortage or
service discontinuity can cause substantial losses. To address
the above challenges, both academia and industry have been
largely focused on solutions ranging from novel architectures
and deployment models, programming abstractions, to specific
tools aiding service lifecycle management. In particular, aca-
demic research has been focused more on theoretical grounds,
investigating areas such as service portability and composi-
tion, efficient service placement and migration strategies, and
software engineering aspects [2], [3]. On the industry side,
instead, cloud providers have put in place best practices for
the implementation of services; however, all these solutions
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typically are limited to a single cloud providers and are not
suitable to address large-scale and multi-region deployment
scenarios [4]. Despite the cloud services market’s steady
growth, no cloud solution provider has really yet proven
to be immune from outages and major episodes of service
disruptions are the norm rather than an exception [5].

The relevant point of view for cloud-based application
developers, instead, should be a more external perspective
where, to overcome such service outages, they could leverage
and use together multiple services provisioned in multiple
cloud environments. The outcome is a more resilient and
lock-in free multi-cloud ecosystem. Indeed, a promising path
that is being considered is the use of the so-called multi-
cloud integration pattern [6], a solution that simultaneously
exploits multiple cloud platforms for service delivery. While
this approach usually implies an overhead in terms of orches-
tration complexity, the implementation of a practical multi-
cloud approach could facilitate the reach of important business
objectives like high availability, failover and lock-in avoidance.
In this context, an effective and complete monitoring solution
spanning different layers of a service plays a key role in
fulfilling the users requirements, serving as the basis for an
(semi)automatic identification and mitigation of faults [7].

To this end, we set to design and implement a pervasive
monitoring solution for use in the multi-cloud PaaS context.
While preserving the general aspect of our study and without
loss of generality, we chose to extend NoMISHAP [8], a state-
of-the-art multi-cloud middleware solution, by making it more
robust to faults and able to sustain possible high load peaks.
The proposed solution aims to provide a complete monitoring
suite able to collect information across all the layers of a multi-
cloud PaaS. The gathered monitoring data can serve as input
to an (semi)automatic failure recovery procedure and/or cloud
operators, aiding to recover and/or prevent potential hazardous
conditions in an efficient way. Finally, it is noteworthy to
point out, that our proposal does not substitute existing ones
offered by cloud providers. On the contrary, it integrates them
and fills-in eventual gaps, providing additional information
spanning multiple layers.

II. SIDEBAR: TOWARD MULTI-CLOUD PAAS SUPPORT

Most cloud offerings are equipped with complex monitoring
solutions, but all these tools are usually tailored and locked-
in to the provider infrastructure and cannot be ported and/or
easily tapped to span heterogeneous cloud environments [2].
Tackling the issue, several proposals pursuing a multi-cloud
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approach can be found in literature. A seminal effort in this
direction is presented by the open source project OpenNeb-
ula [9]. The solution offers a cloud computing toolkit for
managing heterogeneous distributed datacenter infrastructures.
It can orchestrate storage, network, monitoring, and security
technologies to deploy multi-tier services as virtual machines
on distributed infrastructures, combining both datacenter and
remote cloud resources. This project presents a lot of inter-
esting features and a powerful toolkit for multi-cloud environ-
ments. However, it targets integration at the IaaS layer only.

Pursuing a similar objective, different academic projects
have addressed the challenging task of provisioning software
stacks, libraries for frameworks aimed for the deployment,
monitoring and adaptation of cloud-based systems at the IaaS
and/or PaaS layers. FraSCAti is a solution which relies on the
extended service component architecture, a technology agnos-
tic standard for developing and deploying distributed service-
oriented applications, to deploy federated multi-cloud PaaS
infrastructures [10]. Its open service model allows FraSCAti to
leverage on both PaaS infrastructure and the SaaS applications
hosted on top of it.

soCloud extends the FraSCAti execution engine inheriting
its capabilities of extending across multi-cloud PaaS envi-
ronments. In addition, it introduces new features facilitating
portability, provisioning, resilience and high availability of
services across multiple clouds [11].

Cloud4SOA introduces a broker-based architecture, en-
abling a scalable approach to heterogeneous PaaS offerings
integration in terms of semantic interconnection between
different providers sharing the same technology [12]. The
architecture is equipped with management and monitoring
capabilities providing the appropriate flexibility to handle
either public or private deployment models.

Both FraSCAti and Cloud4SOA are elaborated examples
proposing a multi-layer integration approach for the multi-
cloud domain, however, they require the deployment of addi-
tional physical resources, either on-site or off-site, hosting the
control logic.

Addressing heterogeneous multi-cloud environments, mO-
SAIC focuses on both IaaS and PaaS layers by allowing
applications to specify their service requirements through an
ontology [13]. The proposal relies on a brokering mechanism
exploited to search for the best set of services meeting applica-
tion requirements. The main outcome of the mOSAIC project
is a common communication API for multi-cloud resources.

NoMISHAP is a middleware solution aimed at providing
a transparent support for high availability, exploiting multi-
ple cloud PaaS providers simultaneously [8]. The proposal
achieves its promise by introducing an abstraction and adap-
tion layer used to simplify and unify the access to services
available on the underlying PaaS. This feature allows cloud
developers to concentrate only on essential core business code,
developed once and deployed on multiple PaaS solutions.
Compared to the prior discussed proposals, NoOMISHAP poses
a lower barrier of entry, allowing for the integration of individ-
ual PaaS services spanning multiple environments through the
use of lightweight proxies. The proxy could be provisioned in
situ or hosted elsewhere as a third party service.
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III. THE NOMISHAP MONITORING PROPOSAL

Herein we discuss the extensions made to NoMISHAP.
To this end, we start by identifying the monitoring data
sources and than discuss the approach and tools adopted to
extract them. We anticipate our integration approach makes
use of an adaptation layer and associated components allowing
us to integrate monitoring services/components, providing a
uniform and logically centralized data presentation layer.

A. Data Sources

To maintain a complete and consistent view of the PaaS
layer, we need to collect metrics pertaining to the service
components the application relies on and the NoMISHAP
middleware components deployed on the PaaS. Unfortunately,
not all PaaS providers expose state statistics related to the
services. Filling in this gap, we can consider as a good
representation of performance and state, the historical data
transparently collected by the proxy itself. The monitoring data
are then forwarded to a logically centralized data aggregation
service.

Another source of data are the performance metrics as
perceived by the client proxy while forwarding user requests
to the appropriate PaaS. This intermediary component collects
and computes metrics related to every call executed over the
NoMISHAP middleware against the PaaS proxies. The gath-
ered monitoring data are then periodically sent for digestion to
a logically centralized aggregation service (later on). Finally,
another piece of the puzzle in the data gathering effort is on
the client side. Collecting metrics on the client side enables
us to estimate the perceived end-to-end QoS and can help
detect incidents and/or faults in part(s) of our infrastructure.
These end-to-end measurements can in principle be compared
with the prior ones, denoting different logical segments of
the communication, and could help to diagnose and pinpoint
performance issues.

While data collection related to the communication path is
of paramount importance, one should not neglect health data
related to the actual functional components of the architecture.
To this end, depending on the monitoring features provisioned
by the PaaS environment, different solutions are viable for
extracting health information concerning the proxy compo-
nents itself. In scenarios where the PaaS solution exposes
status data related to the services, our monitoring solution
can tap to the monitoring service available at the PaaS layer.
Otherwise, the proxy can itself collect metrics about state and
performance while handling requests such as measuring their
response times.

B. A Component-based Approach

Figure 1 shows the integration approach and components
used to collected data from the data sources, feeding them
to an analytics components. Starting from the bottom layer,
to collect the data on the PaaS side, we rely on an adapter
software component which interfaces with the PaaS service
layer. The component is capable of acquiring the metrics
from the provider monitoring service(s) - currently extended
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Fig. 1: The proposed monitoring solution. From the bottom up, one finds the PaaS proxy component tailored to the specific PaaS
environment. The component is extended to contemplate for monitoring functionalities pertaining to the PaaS component(s)
used by the application and the proxy itself (gray). Moving up is the client-proxy component, mediating user requests toward
the NoMISHAP middleware. The component contemplates a monitoring module used to gather usage and component health
data. Aside, is the logically centralized data aggregation service consisting of a (distributed) Elasticsearch service.

to support some major providers such as IBM, Pivotal [14],
Openshift [15], and Heroku [16] - successively forwarding
them to a data aggregation service. The data at this stage, if
desirable, might be subject to some preliminary computation
and/or filtering.

In order to collect data pertaining to the proxy itself, the
component was extended to contemplate for a data gather-
ing module. This additional module, evidenced in Fig. 1,
could also be distributed elsewhere, acting as a standalone
component. To this aim, we exploit the Elasticsearch APM
module which has the capability of intercepting REST calls
passing through the proxy and executed against PaaS services,
producing advanced statistics like errors and response times.
All the data gathered are successively sent to an APM server
which is responsible for data aggregation and successively feed
them to a logically centralized point of aggregation.

The available PaaS environments comprising the multi-
cloud solution, notify their presence and register with the
client proxy, acting as an intermediary dispatching user re-
quests. This layer needs an up-to-date view on the underly-
ing resources, available PaaS environments. To this end, the
client-proxy relies on a synchronization service embodied by
Consul.io, a service networking solution used to connect and
secure services across any runtime platform. This proxy acts

as an entry point for nearly all operations, and its operational
performance is critical for the overall throughput and health
of the multi-cloud environment.

To fetch advanced metrics on nodes hosting the synchro-
nization service, we exploit the Beats component present in
Elasticsearch. Beat services, are additional modules that can be
installed on nodes, allowing to intercept and expose advanced
and complete metrics about the state of a hosting node and
eventual services installed. The extracted metrics are then
reliably sent to the data aggregation service which can be
consulted on demand.

The proposal is not complete without provisioning an an-
alytics engine capable of visualizing and reacting to changes
in the environment. Also, it is desirable that this engine itself
could scale on a per-need basis. To this aim, this function-
ality resides and is embedded on the Elasticsearch analytics.
In our proposal, Elasticsearch constitutes the final endpoint
responsible for the gathering, computation and storage of the
metrics of interest, enabling the visualization, reporting and
advanced analysis in a (near) real time fashion. Thanks to
advanced sharding techniques, Elasticsearch is able to scale,
through a policy-based engine, and replicate functional com-
ponents across compute clusters. At the end of the provisioned
pipeline stands Kibana, a data visualization tool equipped with
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#Nodes | Provider Typology RAM/Host (GB) | #CPU/Host
Locust 3 Garr Cloud Virtual Machine 4 2
Consul 5 2 A;ure PUbh? cloud Virtual Machine 8 2
3 Private Hosting
Elastic Stack 2 Private Hosting Docker Container 16 4
Pivotal 2 Pivotal Web Services | Cloud Foundry Container | 0.5 1
OpenFaaS on OpenShift | 2 Private Hosting Kubernetes Container 1 2
Bluemix 2 IBM Bluemix Cloud Foundry Container | 0.25 1
Heroku 1 Heroku Dynos 0.5 1

TABLE I: Characteristics of each cloud provider solution.

advanced graphics and featured maps. All these services, part
of the Elasticsearch stack, are capable also of monitoring
the hosting infrastructure, providing advanced information and
alerts on the cluster(s) status.

As a final note, when dealing with a potentially large amount
of data, direct forwarding of the information to the Elastic-
search cluster might not be feasible. To address this potential
issue, one could rely on the Elasticsearch Logstash service,
subjecting the data sources to a (pre)processing pipeline by
applying transformations, contributing to the scalability of the
whole monitoring infrastructure during peaks.

IV. EXPERIMENTAL ASSESSMENT

In the following, we discuss the multi-cloud testbed and its
configuration used to asses our proposal. We then conclude
by presenting some experimental results focusing on the core
components. The NoMISHAP source code and the testbed
configuration used for the assessment can be found in [17].

A. Testbed and Configuration

To assess the capabilities of our proposal, we set up a
test infrastructure emulating a real scenario where a number
of concurrent users issue requests against a PaaS services
mediated by the NoMISHAP middleware. For the purpose of
this experimentation, we consider a PDF conversion service
provisioned in each of the considered cloud environments.
Concerning the multi-cloud PaaS environment, we chose to
rely on three top solutions available in the market shown
in Fig. 1. The characteristics of the respective testbeds are
summarized in Table 1.

To simulate a group of concurrent users on the distributed
platform, we exploit Locust, a distributed tool used to execute
infrastructure load test. To this end, we set up three Locust
nodes and locally installed the client proxy which transpar-
ently mediates user requests issued against the NoMISHAP
middleware.

The test lasted 12 hours reaching a peak of 5000 concurrent
requests/s. To evidence the benefits of our proposal, we
simulate a fault-like behaviour in one subsystem, hosting the
client-proxy at 16:10. This fault corresponds to a sudden drop
on the access link capacity going from 100 Mbps to 200 Kbps.
Through this, we would like to asses our proposals both in
terms of being capable of identifying the change in behaviour
and in pinpointing the source of anomaly. We expect that the
metrics gathered from all the subsystems coupled with the
knowledge of the relationships between the components of
the infrastructure could enable a fast discovery of the cause.
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Fig. 2: Average response time of the PaaS services. The
vertical line at 16:10 denotes the start time of the capacity
drop phenomena.

B. Results

Let us now delve into the behaviour of the monitoring
system and its thorough assessment to verify that it fulfills
our design objective.

The first component is the PaaS services layer provided
through the different environments. This layer can contribute
to an increase in response times when one or more services
go down but also depending on the service resource quota
allocation and sustained load.

Thanks to the monitoring stack added to the PaaS proxy,
we are able to monitor even the services which are not under
our direct control. Figure 2 shows the individual service load
evolution for the duration of the experiment. The client proxy
forwards user requests in a round robin fashion to the available
PaaS platforms comprised in the experimental multi-cloud
platform. Overall, the trend shows periodic and justifiable
behaviour of services inside the single PaaS with periodic
fluctuations in terms of received and transmitted data.

Going upward in the invocation chain, we find the PaaS
proxy component. Figure 3 shows, among other data, the
(ingress) average traffic load the component is subject to, with
an evident decrease in volume at 16:10. The cause for this
reduction in traffic is to be found upward in the chain call,
which considering the experimental setup, points to the client
network. We report that despite the operational constraints
imposed in the client network, the client proxy synchronization
mechanism consumes a small amount of bandwidth and the
component is capable of guaranteeing operational continuity.
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Fig. 3: Average network traffic registered by PaaS proxies.

V. CONCLUSION

In this article, we presented and discussed a monitoring
solution for use in distributed, multi-cloud environments. To
asses and validate the design rationale, we presented an experi-
mental analysis involving a realistic testbed consisting of three
heterogeneous PaaS environments. The proposal can be further
extended to provide for intelligent, rule-based mechanisms ca-
pable of handling (semi)automatic fault mitigation/migration.
Yet another interesting on-going development is that of extend-
ing the architectural principles to those of edge computing. In
this case, one additional and challenging research question is
that of extending the solution to contemplate for a Function
as a Service layer.
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